Communication Optimization Research

Presentation Coordinators:

Prof. Anthony Skjellum and Prof. Amanda Bienz

Center for Understandable, Performant Exascale Communication Systems

Research Lightning Talks/Posters

- Riley Shipley, TN Tech: RAPIDS Channel API: Improved Persistent Communication
- Evan Suggs, TN Tech: Enabling Stream-Triggered MPI+X backends for Cabana Benchmarks
- Nicole Avans, TN Tech: Enabling Performant Inter-Node Communication for Kokkos Views
- Gerald Collom, UNM: Partitioned Communication in Sparse Matrix Operations
- Evelyn Namugwanya, TN Tech: Optimizing Collective Communication Using MPI RMA & Generalized Algorithms
- Mike Adams, UNM: Optimizing GPU-Aware Allreduce Operations
- Shannon Kinkead, UNM: Scaling All-to-all Operations Across Emerging Many-Core Supercomputer

Point-to-point and neighbor exchange communication abstractions

- Riley Shipley, TN Tech: RAPIDS Channel API: Improved Persistent Communication
- Evan Suggs, TN Tech: Enabling Stream-Triggered MPI+X backends for Cabana Benchmarks
- Nicole Avans, TN Tech: Enabling Performant Inter-Node Communication for Kokkos Views
- Gerald Collom, UNM: Partitioned Communication in Sparse Matrix
 Operations

RAPIDS Channel API: Improved Persistent Communication

Riley Shipley, Anthony Skjellum, Patrick Bridges, Purushotham Bangalore

State of the Art

- MPI has been integral to HPC from the start
- Vendor-locked alternatives (NCCL et al) are starting to take the lead
- MPI has been too slow to adapt and innovate due to standardization process (ex: GPU support)
- Optimization strategies have been explored extensively
- Generality limits performance potential (ex: MPI_Wait)

What is **RAPIDS**?

- <u>Reduced API Data-transfer Specifications</u>
- Goal: Define styles of communication used by applications as minimal (RISC-like) APIs that are composable
- Separating each kind of communication into its own library:
 - Reduces overhead
 - Promotes innovation
 - Simplifies adaptation to new architectures

Channel API

- Designed for stencil-based applications: *hypre*, AMG, PIC codes, etc.
- Eliminates matching and tag queues by creating dedicated one-way Channels between processes, implemented over RMA
- Tag semantics can still be used by making multiple Channels between the same ranks
- RMA buffer can be segmented to allow multiple put operations to occur without synchronizing, unlike persistent operations

Future APIs

GrabBag

- Irregular applications that know message destination, but not the source
- Ex: xRAGE and Cabana
- Removes the requirement for specifying a source on receive
- Source delivered with data

Concurrency

- Applications with dense data layouts (GPU-based)
- Ex: Regular stencil codes
- Allows for independent thread / GPU communication progress

Concurrent Channel

- Applications with fixed dense data layouts
- Applies the concepts of Channel and Concurrency libraries
- Result is multi-thread communication that avoids queues

Cabana Abstractions

Jason Stewart, Patrick Bridges

Center for Understandable, Performant Exascale Communication Systems

Using Cabana to enable performant, applicationfacing C++ communication interfaces

- Cabana includes a variety of communication abstractions
 - Originally drawn from Trilinos Teuchos CommunicationPlan, Distributor, Particle/Grid Halo
 - Simpler place for student innovation/development than Trilinos
 - Range of interesting standalone benchmarks that use these abstractions MD, PD, MPM
 - Goal is to integrate back to Trilinos later
- Filling out range of communication patterns, backends
- Benchmarking
 - Ported and expanded irregular halo benchmark from L7 to Cabana to look at broader range of abstractions
 - Implemented simple stream-triggered halo exchange and complex fluid interface benchmarks to drive research
- Future work:
 - Stream-triggered irregular exchanges,
 - Collective abstractions for grids and AoSoAs
 - Support Kokkos Comm and stream-triggered backends

Expanding Cabana Communication Abstractions

- Added *Collector* class to complement Cabana Distributor
 - Distributor: You know how you are sending to but not who you are receiving from.
 - Collector: You know who you are receiving from but not who you are sending to.
 - Collector needed in sparse matrix operations, new Beatnik unstructured finite element halo
 - PR submitted to Cabana main branch under review
- Added Cabana Infrastructure to support multiple communication backends
 - CommSpace::Mpi, CommSpace::MpiAdvance inspired by Kokkos Comm Communication Spaces
 - Cabana design in collaboration with Stuart Slattery and Sam Reeve (ORNL)
 - PR in development for submission next month
- Optimizing Irregular exchange abstractions in the MPI Advance Communication Space
 - Leverage MPI Advance neighbor discovery and neighbor exchange optimizations (e.g. MPI_Alltoall_crs)
 - PR in development for submission next month
- Co-designing Stream Triggering Abstractions for MPI Advance and Cabana

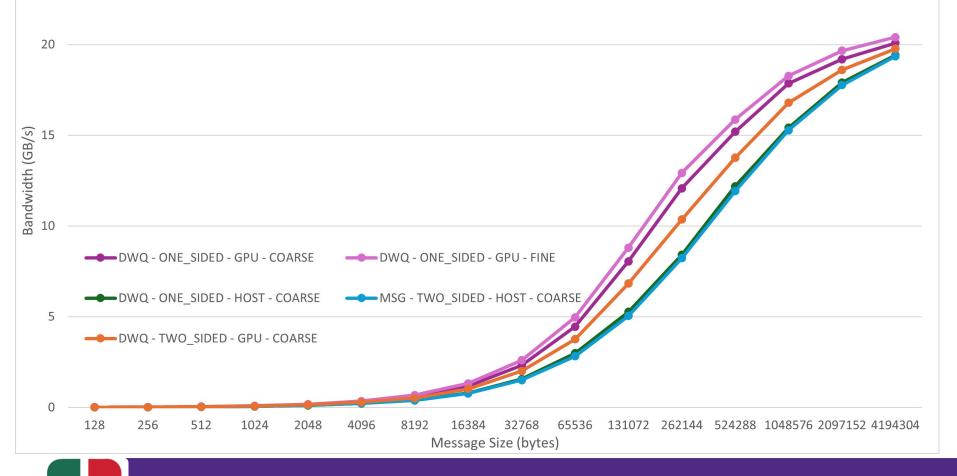
Enabling Stream-Triggered MPI+X Backends for Cabana

Evan Drake Suggs, Patrick Bridges, Derek Schafer, Anthony Skjellum

enter for Understandable, Performant Exascale Communication Systems

Stream Triggering for MPI

- Lots of different proposals for stream triggering for MPI
- None remotely close to standard, accepted, or portable
- Why is this hard?
 - Need to preserve existing semantics
 - Without adding lots of new operations (∀x: MPI_Enqueue_X)
 - Or relying on obscure, hard to use parts of the standard (e.g., PSCW)


	Area 1	Area 2: API Features				
Proposal	Control	Reuses	Changes	Separate	GPU	Collective
I COM	Path	Existing	0	Initialize	Completion	
	Used	APIs	Semantics	and Start	-	
MPI-GDS	Stream	Yes	Weaker	No	Full	Full ¹
MPI-ACX	Stream	Yes^1	No	Yes^1	Full	No
Enqueued						
MPICH	Stream	Yes	No^2	No	Full	Partial
Triggering						
HPE	Stream	No	No	Yes	Full	No
Send-Recv						
Delorean	Stream	No^3	No	Yes	Full	Full
HPE	Stream	Yes	$\mathrm{Stronger}^4$	Yes	Full	Group
One-sided						
Partitioned	Kernel	Yes	No	Yes	$Partial^5$	Full ¹
Comm.						
HPE	Kernel	Yes	No	Yes	Full	No
Persistent						
Intel	Kernel	Yes	No	No	Full	No
GPU-Init						

Bridges, Skjellum, Suggs, Schafer, and Bangalore. **Understanding GPU Triggering APIs for MPI+X Communication**. In Proceedings of EuroMPI 2024.

Initial Benchmark Performance bears out on ²⁵LLNL Tioga AMD MI250X/Slingshot 11

- Packing GPU ping-pong with MPI API on HPE CXI libfabric
- Lot of steps to fully exploit hardware
 - Packing to MI250X write-through memory
 - Readiness assertion avoids RTS/CTS
- 512KB bandwidth improved 33%, better for smaller messages
- Integrating into Cabana and Kokkos miniapplications

CUP

FCS

Integration of Stream-triggering

- We've identified an interface that works with MPI
- CUP-ECS's MPI Advance stream-triggering library works with several backends (CUDA, CXI, etc) to create a portable interface for stream triggering
- We created variants of Cabana that support stream triggering
 - Creates enqueue variants for scatter and gather
 - Uses stream-triggering's queue function to schedule and wait on the underlying communications
- We refactored our CabanaGhost benchmarks to utilize the new stream triggering interfaces added to Cabana

```
void Distributor::Distributor(ExecutionSpace &e)
{
    // Create non-blocking send and receive operations
    for ( int n = 0; n < num_n; ++n ) {</pre>
        auto recv_subview = Kokkos::subview(recv_buffer, recv_bounds);
        auto send_subview = Kokkos::subview(send_buffer, send_bounds);
        MPI_Recv_init( recv_subview.data(), recv_subview.size(), ...,);
        MPI_Send_init( send_subview.data(), send_subview.size(), ...,
   }
    // Pair up send/recv buffers, create a queue for starts and waits
    MPIX_Matchall(halo_ops.data(), halo_ops.size());
    MPIX_Queue_init(&queue, MPIX_QUEUE_TYPE_HIP, &e.hipStream());
void Distributor::distributeData(AoSoA_t& src, AoSoA_t& dst)
    // All operations are enqueued to the stream, which enqueue
    // them to the progress engine associated with the queue
    MPIX_Engueue_startall(gueue, halo_ops.data(), num_n);
    Kokkos::parallel_for(pack_buffer_func, src, send_buffer );
    MPIX_Enqueue_startall(queue, halo_ops.data() + num_n, num_n);
    MPIX_Enqueue_waitall(queue);
    Kokkos::parallel_for( unpack_recv_func, dst, rcev_buffer);
```

Idealized Stream-Triggering Interface

Diving Deeper into Cabana

- Designed Cabana Stream Halo for regular grids
 - Provides stream-triggered enqueueScatter and enqueueGather operations for halo exchanges
 - Added CommSpace::Mpich that uses existing (unoptimized) MPICH stream triggering primitives
 - Currently adding CommSpace::MpiAdvance backend to leverage new MPI Advance primitive
- Created CabanaGhost benchmark
 - Test performance of stream-triggered halo exchange primitives
 - Enable comparisons between different stream triggered backends
- Current work
 - Performing initial testing on UNM on Hopper system, targeting later testing on Tioga/Tuolumne
 - Developing support for stream-triggered collectives in MPI Advance and Cabana

Conclusions and Future Work

- Conclusions
 - This project successfully integrated MPI Advance stream-triggering with Cabana and CabanaGhost on Hopper
 - The results are promising but some issues remain
- Future Work
 - Stream-triggered CabanaGhost working with CXI on the Tioga system and CUDA on Hopper in the near-future
 - Creation of a Kokkos-level stream-triggered interface and further experiments with MPI stream-triggering
 - Port stream triggering into the KokkosComm library to enhance MPI+Kokkos integration and performance

Enabling Performant Inter-Node Communication for Kokkos Views

C. Nicole Avans, Carl Pearson¹, Jan Ciesko¹, Evan Drake Suggs, Stephen L. Olivier¹, Anthony Skjellum ¹Sandia National Laboratories

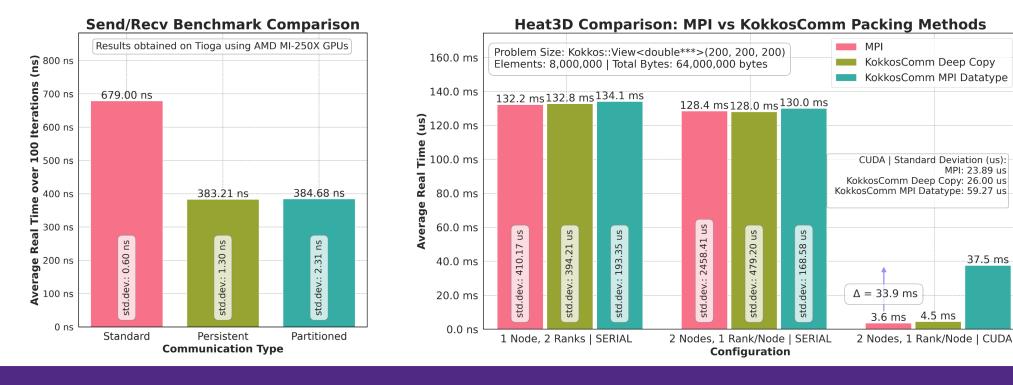
Center for Understandable, Performant Exascale Communication Systems

Kokkos Comm

- The Kokkos Comm library introduces a new communication interface integrated with Kokkos Views
- A unified performance-portable ecosystem for on- and offnode parallel programming
- Kokkos Comm optimizes movement of data by abstracting implementation-specific details and marshaling and unmarshalling of data away from the end-user programmer

Design Communication for Performance, Portability, & Productivity

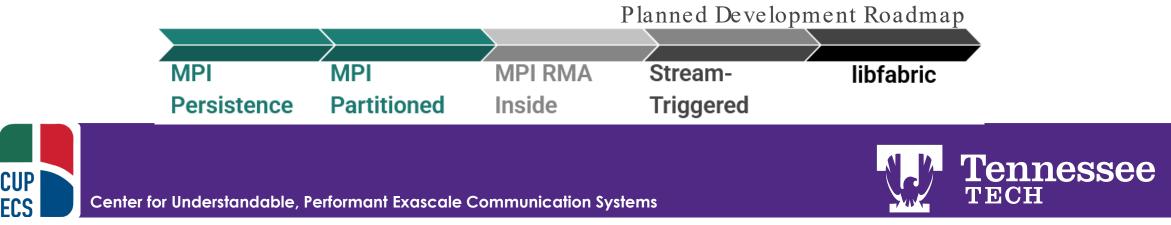
- Enable the fastest path for data to move without changing the program
- Native multi-transport communication support for performance and portability without reducing productivity
- GPU memory space communication is supported based on Kokkos enabled backends (e.g., CUDA, HIP)



Results

CUP

Experiments executed to optimize performance and identify bottlenecks on multiple nodes of SNL Weaver (NVIDIA Tesla V100) and LLNL Tioga (AMD MI250X)



MPI: 23.89 us

37.5 ms

Future Work & Opportunities

- Enhance support to include arbitrary Kokkos View types and mdspan
- Add new communication space backends (e.g., NCCL) to extend Kokkos Comm beyond MPI-based communication for higher performance
- Add support for stream-triggered communication and libfabric to enable optimizations for system-specific performance

Partitioned Communication in Iterative Sparse Matrix Operations

Gerald Collom

Amanda Bienz

Center for Understandable, Performant Exascale Communication Systems

SpMBV

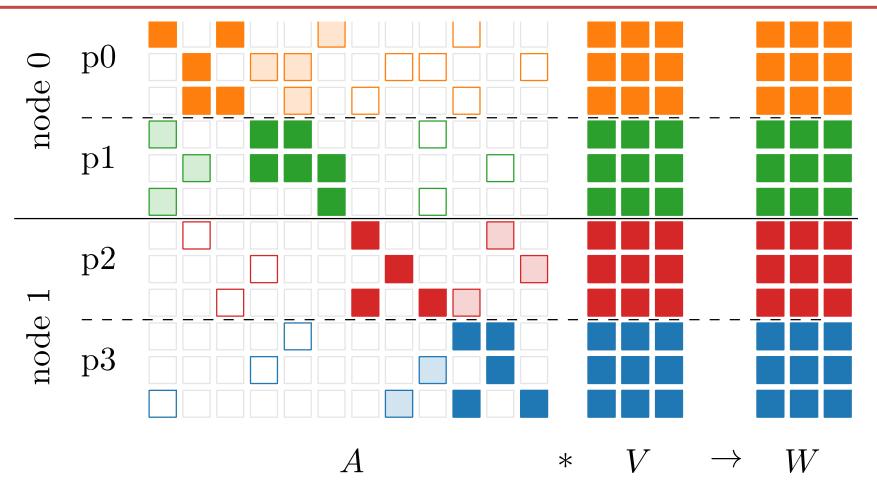


Image source: Performance Analysis and Optimal Communication for ECG by Lockhart et al, 2023

Center for Understandable, Performant Exascale Communication Systems

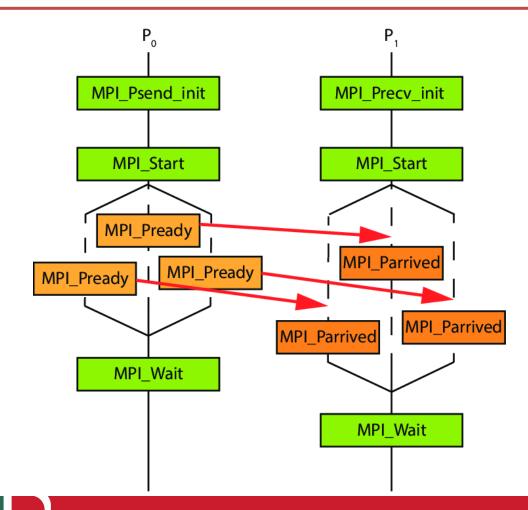
Motivations

- Deep learning
- Block Krylov Methods
- Graph Algorithms
- Quantum State Propagation
- Sparse PCA

SpMBV Benchmark

- Initialize communication
- Iterations:
 - Pack message buffer
 - Communicate
 - Multiply

CUP


Cleanup communication requests

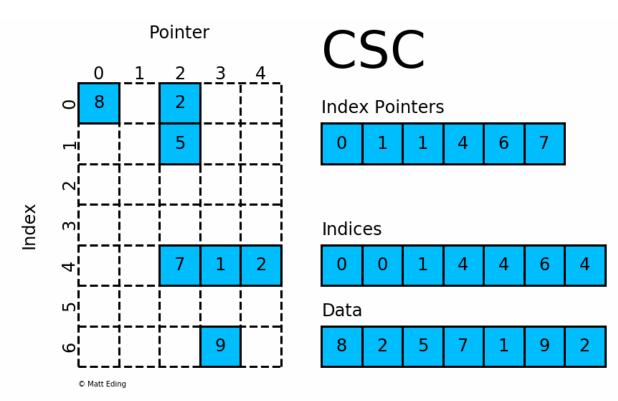
Partitioned MPI

CUP

ECS

In Benchmark:

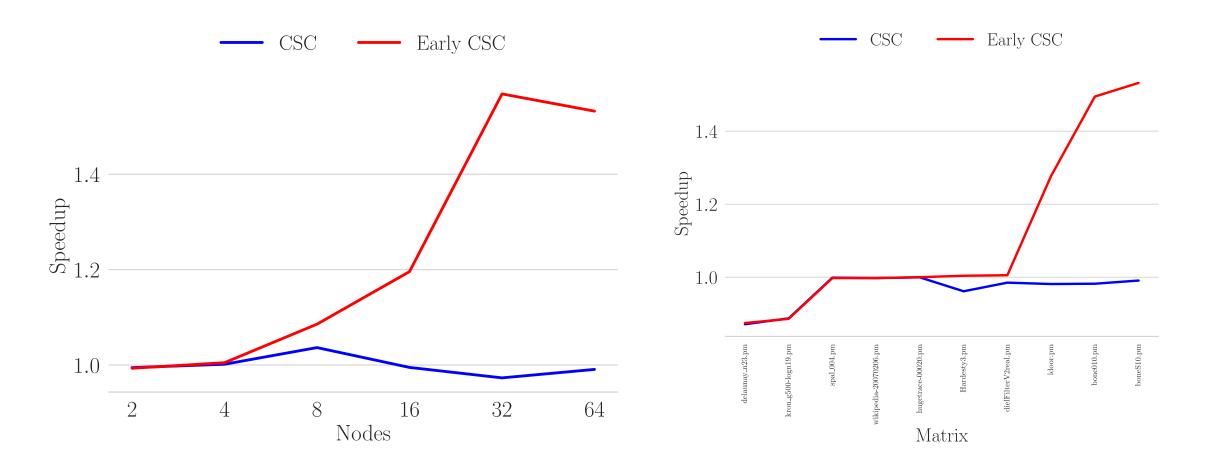
- Add threaded region for packing
- Threads
 asynchronously
 advance to call Pready



Early Communication and Computation

Benchmark Modifications:

- Extend threaded region to include computation


Allow threads to independently advance between computation and communication

Preliminary Results

Center for Understandable, Performant Exascale Communication Systems

THE UNIVERSITY OF

Collective Communication Abstractions and Optimizations

- Evelyn Namugwanya, TN Tech: Optimizing Collective Communication Using MPI RMA & Generalized Algorithms
- Mike Adams, UNM: Optimizing GPU-Aware Allreduce Operations
- Shannon Kinkead, UNM: Scaling All-to-all Operations Across Emerging Many-Core Supercomputer

RMA-Based Alltoally: Performance Analysis

Evelyn Namugwanya, Amanda Bienz, Matthew Dosanjh¹, Anthony Skjellum ¹Sandia National Laboratories

Center

Introduction

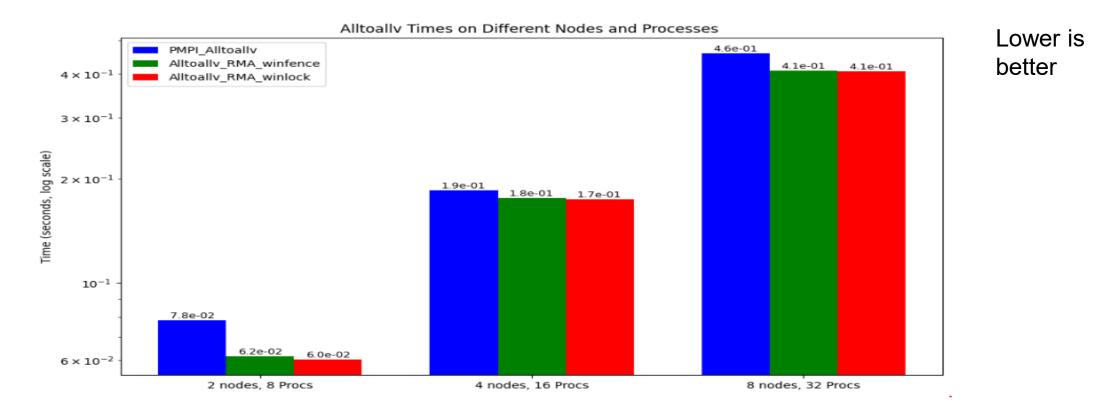
- Alltoallv is critical in high-performance computing (HPC).
- MPI_Alltoallv is widely used for variable-size data exchange.
- RMA (Remote Memory Access) enables one-sided communication.
- Goal: Evaluate performance of RMA-based Alltoallv variants.

Methodology

- Implemented several versions of alltoallv_rma.
- Evaluated on LLNL Lassen and Dane clusters.
- APIs: MPI_Win_fence, MPI_Win_lock, MPI_Win_flush
- Caliper profiling
- Focused on reducing sync overhead and improving scalability

Fence-based Alltoally RMA

- Uses MPI_Win_fence to begin/end RMA epoch.
- MPI_Put used to transfer data into target memory.
- Synchronizes with two MPI_Win_fence calls and MPI_Barrier.
- Simpler but incurs global synchronization overhead.


Lock-based Alltoallv RMA

- Employs MPI_Win_lock_all and MPI_Rput.
- Asynchronous data transfer with MPI_Rput.
- Uses MPI_Win_flush_all to ensure completion.
- Finer-grain control compared to fence.
- Ends with MPI_Win_unlock_all and MPI_Barrier.

Alltoallv Comparison

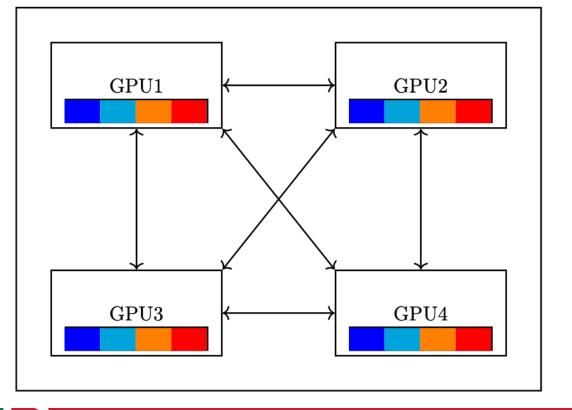
Message size = 33,554,432 bytes

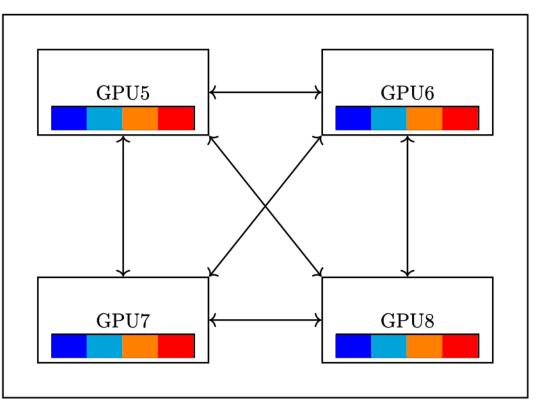
Results and Future work

- Experiments with our Alltoallv Benchmark on LLNL Lassen and Dane supercomputers.
- The default MPI_Alltoallv offers strong performance on small process counts.
- RMA variants, especially with fine-grain locking, scale better with more nodes and process count.
- This can be attributed to its flexibility as compared to MPI_Win_fence.
- Synchronization overhead is a key bottleneck.
- Future work includes using OpenSHMEM and comparing persistent RMA vs. OpenSHMEM Alltoallv.

Optimizing GPU-Aware Allreduce Operations

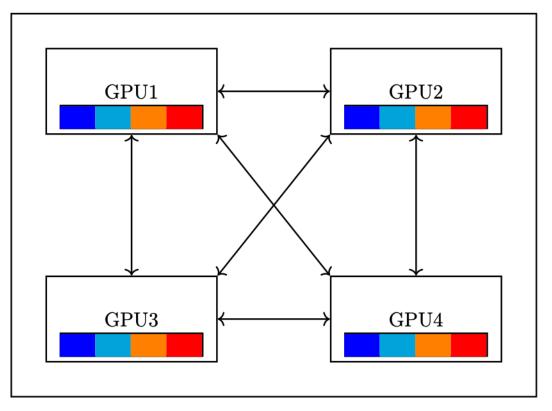
Mike Adams, Amanda Bienz





GPU-Aware Allreduce

Node 0

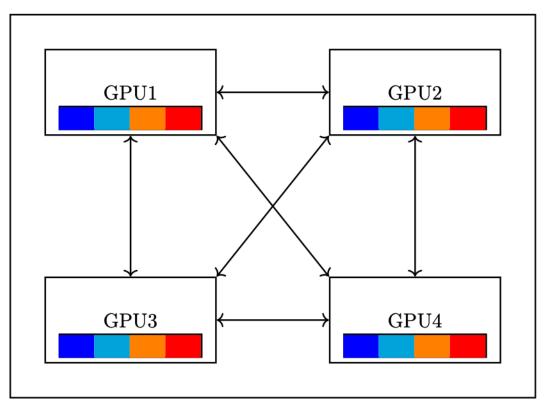


Multi-Lane Allreduce

Node 0

CUP

FCS

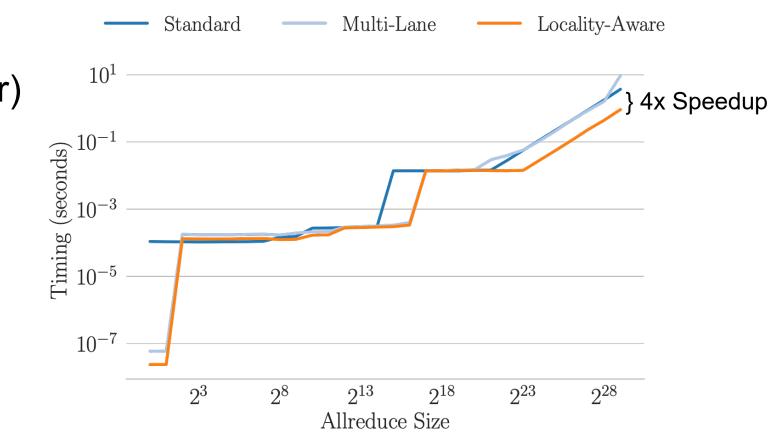

- 1. MPI_Reduce_scatter on node
- 2. MPI_Allreduce with only corresponding GPUs on each other node
- 3. MPI_Allgather on node

J. L. Träff and S. Hunold, "Decomposing MPI Collectives for Exploiting Multi-lane Communication," *2020 IEEE International Conference on Cluster Computing (CLUSTER)*

Locality-Aware Allreduce

Node 0

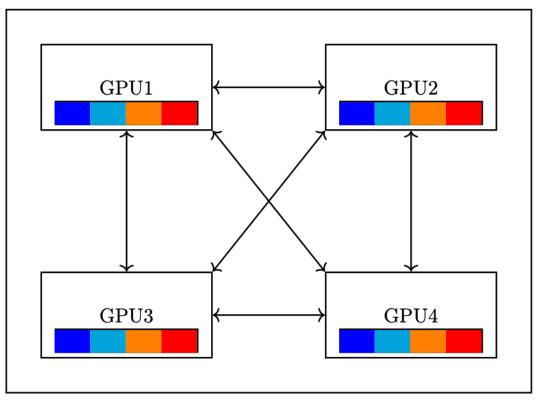
CUP


ECS

- 1. MPI_Allreduce on node
- 2. MPI_Allreduce with only corresponding GPUs on each other node

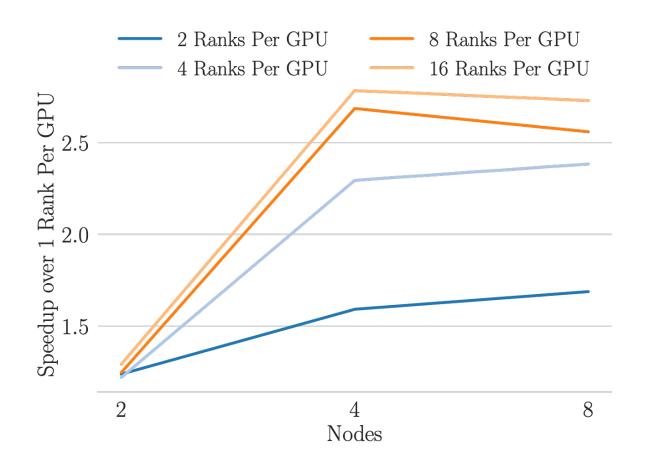
Locality-Aware Allreduce

- DeltaAl (Grace Hopper)
- 4 GPUs per node
- 16 Nodes



Multiple MPI Ranks per GPU

Node 0


CUP

- Each GPU has 1 leader MPI rank and many other non-leader ranks
 - Leader creates buffer
 - Shares IPC handle with other ranks
 - Each rank reduces their local portion of buffer

Initial Results

- Delta Supercomputer
- 4 GPUs per node
- Each timing: best time for multiple underlying algorithms

Scaling All-to-all Operations Across Emerging Many-Core Supercomputers

Shannon Kinkead¹, Amanda Bienz

¹Sandia National Laboratories

All-to-all Operations

Algorithm 1: Pairwise Exchange	
Input: p	${\rm process \ rank}$
n	$\{ process \ count \}$
$s_{\tt size},s_{\tt type},s_{\tt buf}$	$\{$ send size, type, and buffer $\}$
$r_{\tt size},r_{\tt type},r_{\tt buf}$	$\{$ recv size, type, and buffer $\}$
for $i \leftarrow 0$ to n do	
$s_{\mathtt{proc}} = p + i \mod n$	
$r_{\mathtt{proc}} = p + n - i \mod n$	
$\texttt{MPI}_\texttt{Sendrecv}(s_{\texttt{buf}}, s_{\texttt{size}}, s_{\texttt{type}}, s_{\texttt{proc}}, \dots) r_{\texttt{buf}}, r_{\texttt{si}}$	$_{ze}, r_{type}, r_{proc}, \dots$
—	

Algorithm 2: Non-blocking	
Input: p	${\rm process \ rank}$
n	$\{ process \ count \}$
$S_{\tt size},S_{\tt type},S_{\tt buf}$	$\{\text{send size, type, and buffer}\}$
$r_{\tt size}, r_{\tt type}, r_{\tt buf}$	$\{$ recv size, type, and buffer $\}$
for $i \leftarrow 0$ to n do	
$s_{\mathtt{proc}} = p + i \mod n$	
$r_{ t proc} = p + n - i \mod n$	
$\texttt{MPI_Isend}(s_{\texttt{buf}}, s_{\texttt{size}}, s_{\texttt{type}}, s_{\texttt{proc}}, \dots)$	
$\texttt{MPI_Irecv}(r_{\texttt{buf}}, r_{\texttt{size}}, r_{\texttt{type}}, r_{\texttt{proc}}, \dots)$	
$ t MPI_Waitall(2 imes(n-1),\ldots)$	

- Each process exchanges an equal sized amount of data with every other process
- **Pairwise:** scheduled exchange, one send/recv at a time
- Nonblocking: initialize all communication, wait
- Emerging systems: many cores per node, intra- and inter-node communication performance differs greatly

Hierarchical All-to-all Operations

- Hierarchical: one
 process per node
 performs all inter-node
 communication
- Multi-leader: a number of leaders per node each perform a subset of internode communication

Input: p		$\{ process rank \}$
ount}~	11	(process c
$\operatorname{uffer}\}$	$s_{\tt size},s_{\tt type},s_{\tt buf}$	$\{$ send size, type, and b
${}_{iffer}$	$r_{\tt size},r_{\tt type},r_{\tt buf}$	$\{$ recv size, type, and b
$gion\}$	local_comm	{All processes local to re
of local_comm} ppn, l		{Size and rank
qual local	rank} group_comm	{All processes with o
omm)		ther to leader $_ ext{Gather}(s_{ t buf}, s_{ t size} \cdot n, \ldots, s_{ t buf}_{leader}, \ldots, ext{local_c})$
		Repack Data
		// Alltoall exchange between leaders
$_{ader}, r_{size}$	$p \cdot ppn^2 \dots, \texttt{group_comm})$	$\operatorname{MPI}_{\operatorname{Alltoall}}(s_{\mathtt{buf}_{leader}}, s_{\mathtt{size}} \cdot ppn^2, \ldots, r_{\mathtt{buf}_l})$
		Repack Data
		// Scatter from leader
	, local comm)	MPI Scatter($\underline{r}_{\text{buf}}, \ldots, \underline{r}_{\text{size}ader}, \ldots, \underline{r}_{\text{size}$

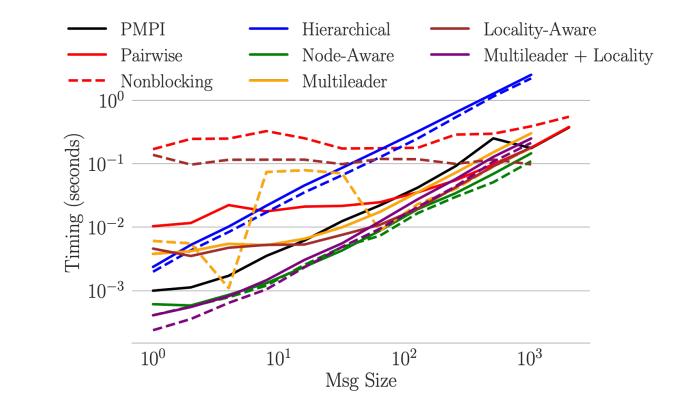
Locality-Aware All-to-all Operations

- Node-Aware: all-to-all between all processes with equal local_rank, then all-to-all on node
- Locality-Aware: Same as node-aware, but multiple groups per node

Algorith	m 4: Locality-Aw	vare	
Input: p		${\rm process \ rank}$	
<pre>punt }</pre>	n		{process c
uffer}	$s_{\tt size},s_{\tt type},s_{\tt buf}$		$\{$ send size, type, and b [.]
uffer}	$r_{\tt size},r_{\tt type},r_{\tt buf}$		{recv size, type, and b^{-}
gion}	local_comm		{All processes local to re
of local_comm} ppn, l			{Size and rank
qual local rank]	} group_c	omm	{All processes with ϵ
	$tmp_{\texttt{buf}} \leftarrow$	- buffer of size	$s_{\texttt{size}}$
, group_comm	l)	// Inter-region Allton MPI_Alltoall(s _{buf}	all $s, s_{size} \cdot ppn, \ldots, tmp_{buf}, r_{size} \cdot ppn \ldots$
		Repack Datą	
		1.1	egion Alltoall
$_{ t ze} \cdot ppn \ldots, extsf{local_comm})$		MPI_Al	$ltoall(tmp_{buf}, r_{size} \cdot ppn, \ldots, r_{buf}, r_{si})$

Multileader Locality

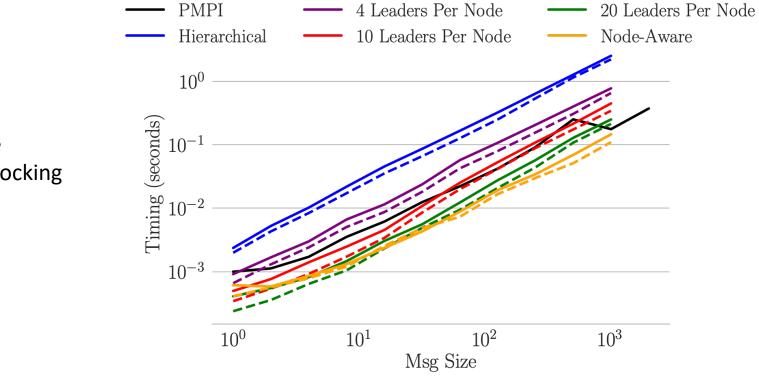
 Multiple leaders per node, each performing a nodeaware all-to-all


CUP

FCS

Inpu	t: p			$\{ process rank \}$
				funcess collector
ouffer}	$s_{\tt size},s_{\tt typ}$	s, s_{buf}		{send size, type, and]
ouffer}	$r_{\text{size}}, r_{\text{typ}}$	$_{\rm e}, r_{ m buf}$		$\{$ recv size, type, and $ $
node	node_com	m		{All processes local to
of node_c	omm}	ppn, l		{Size and rank
es local to le	$eader\}$	leader_comm		{All processed
of leader_c	omm}	ppl		{Size
aval local ra	ank. 12	קירווחדק		{All processes.with e
{size of group_comm}		$n\}$ n_{nodes}		
				size $s_{\text{size}} \cdot n \cdot ppn$ size $r_{\text{size}} \cdot n \cdot ppn$
.,local_d	comm)		// Gather to lea MPI_Gather(ader $(s_{\texttt{buf}}, s_{\texttt{size}} \cdot n, \ldots, s_{\texttt{buf}_{leader}}, \ldots$
			Repack Data	
$\cdot ppl, \ldots, r_{\text{buf}_{leader}}, r_{\text{size}} \cdot ppn \cdot ppl \ldots,$		// Inter-region Alltoall MPI_Alltoall($s_{buf_{leader}}, s_{size} \cdot pprogroup_comm$)		
				Repack Data
Juizeader y J	sizenn l^2_{noues}	Spor $, \ldots, r_{\mathrm{nin}_{eader}, }$	$r_{size}n\eta l_{noues}^2$	// Intra-region Alltoall PPT Alltoall(<u>radil(radil(radional)</u> , 1000), 1
				Repack Data
ter irom iea	aer			- // 9 // Sch
/		$r n, \ldots, r_{\texttt{buf}}, \ldots, \texttt{lo}$		MPI

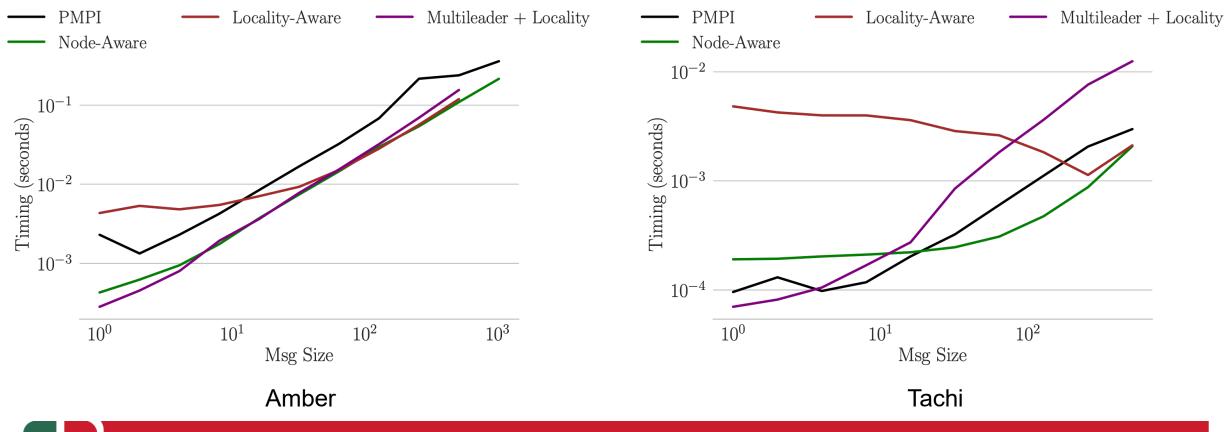
Scaling Results (Dane, 32 Nodes)


Solid: Pairwise Dotted: Nonblocking

CUP

ECS

Multileader + Locality


Solid: Pairwise Dotted: Nonblocking

CUP

ECS

More Results

Center for Understandable, Performant Exascale Communication Systems

Poster-based Discussion Time

Lunch provided at Noon

