
Communication Optimization
Research

Presentation Coordinators:
Prof. Anthony Skjellum and Prof. Amanda Bienz

Research Lightning Talks/Posters
• Riley Shipley, TN Tech: RAPIDS Channel API: Improved Persistent Communication
• Evan Suggs, TN Tech: Enabling Stream-Triggered MPI+X backends for Cabana

Benchmarks
• Nicole Avans, TN Tech: Enabling Performant Inter-Node Communication for Kokkos

Views
• Gerald Collom, UNM: Partitioned Communication in Sparse Matrix Operations
• Evelyn Namugwanya, TN Tech: Optimizing Collective Communication Using MPI RMA

& Generalized Algorithms
• Mike Adams, UNM: Optimizing GPU-Aware Allreduce Operations
• Shannon Kinkead, UNM: Scaling All-to-all Operations Across Emerging Many-Core

Supercomputer

Center for Understandable, Performant Exascale Communication Systems

Point-to-point and neighbor exchange
communication abstractions
• Riley Shipley, TN Tech: RAPIDS Channel API: Improved Persistent

Communication
• Evan Suggs, TN Tech: Enabling Stream-Triggered MPI+X backends

for Cabana Benchmarks
• Nicole Avans, TN Tech: Enabling Performant Inter-Node

Communication for Kokkos Views
• Gerald Collom, UNM: Partitioned Communication in Sparse Matrix

Operations

Center for Understandable, Performant Exascale Communication Systems

RAPIDS Channel API:
Improved Persistent Communication

Riley Shipley, Anthony Skjellum, Patrick Bridges, Purushotham Bangalore

Center for Understandable, Performant Exascale Communication Systems

State of the Art
• MPI has been integral to HPC from the start
• Vendor-locked alternatives (NCCL et al) are starting to take the lead
• MPI has been too slow to adapt and innovate due to standardization

process (ex: GPU support)
• Optimization strategies have been explored extensively
• Generality limits performance potential (ex: MPI_Wait)

Center for Understandable, Performant Exascale Communication Systems

What is RAPIDS?
• Reduced API Data-transfer Specifications
• Goal: Define styles of communication used by applications as

minimal (RISC-like) APIs that are composable
• Separating each kind of communication into its own library:

• Reduces overhead
• Promotes innovation
• Simplifies adaptation to new architectures

Center for Understandable, Performant Exascale Communication Systems

Channel API
• Designed for stencil-based applications: hypre, AMG, PIC codes, etc.
• Eliminates matching and tag queues by creating dedicated one-way

Channels between processes, implemented over RMA
• Tag semantics can still be used by making multiple Channels between

the same ranks
• RMA buffer can be segmented to allow multiple put operations to occur

without synchronizing, unlike persistent operations

Center for Understandable, Performant Exascale Communication Systems

Future APIs

GrabBag

• Irregular applications that
know message destination,
but not the source

• Ex: xRAGE and Cabana
• Removes the requirement

for specifying a source on
receive

• Source delivered with data

Concurrency

• Applications with dense
data layouts (GPU-based)

• Ex: Regular stencil codes
• Allows for independent

thread / GPU
communication progress

Concurrent Channel

• Applications with fixed
dense data layouts

• Applies the concepts of
Channel and Concurrency
libraries

• Result is multi-thread
communication that avoids
queues

Cabana Abstractions
Jason Stewart, Patrick Bridges

Using Cabana to enable performant, application-
facing C++ communication interfaces
• Cabana includes a variety of communication abstractions

• Originally drawn from Trilinos Teuchos - CommunicationPlan, Distributor, Particle/Grid Halo
• Simpler place for student innovation/development than Trilinos
• Range of interesting standalone benchmarks that use these abstractions – MD, PD, MPM
• Goal is to integrate back to Trilinos later

• Filling out range of communication patterns, backends
• Benchmarking

• Ported and expanded irregular halo benchmark from L7 to Cabana to look at broader range of abstractions
• Implemented simple stream-triggered halo exchange and complex fluid interface benchmarks to drive research

• Future work:
• Stream-triggered irregular exchanges,
• Collective abstractions for grids and AoSoAs
• Support Kokkos Comm and stream-triggered backends

Expanding Cabana Communication
Abstractions
• Added Collector class to complement Cabana Distributor

• Distributor: You know how you are sending to but not who you are receiving from.
• Collector: You know who you are receiving from but not who you are sending to.
• Collector needed in sparse matrix operations, new Beatnik unstructured finite element halo
• PR submitted to Cabana main branch under review

• Added Cabana Infrastructure to support multiple communication backends
• CommSpace::Mpi, CommSpace::MpiAdvance inspired by Kokkos Comm Communication Spaces
• Cabana design in collaboration with Stuart Slattery and Sam Reeve (ORNL)
• PR in development for submission next month

• Optimizing Irregular exchange abstractions in the MPI Advance Communication Space
• Leverage MPI Advance neighbor discovery and neighbor exchange optimizations (e.g. MPI_Alltoall_crs)
• PR in development for submission next month

• Co-designing Stream Triggering Abstractions for MPI Advance and Cabana

Center for Understandable, Performant Exascale Communication Systems

Enabling Stream-Triggered
MPI+X Backends for Cabana

Evan Drake Suggs, Patrick Bridges,
Derek Schafer, Anthony Skjellum

Center for Understandable, Performant Exascale Communication Systems

Stream Triggering for MPI
• Lots of different proposals for

stream triggering for MPI
• None remotely close to standard,

accepted, or portable
• Why is this hard?

• Need to preserve existing semantics
• Without adding lots of new

operations (∀x: MPI_Enqueue_X)
• Or relying on obscure, hard to use

parts of the standard (e.g., PSCW) Bridges, Skjellum, Suggs, Schafer, and Bangalore. Understanding GPU
Triggering APIs for MPI+X Communication. In Proceedings of EuroMPI
2024.

Center for Understandable, Performant Exascale Communication Systems

Initial Benchmark Performance bears out on
LLNL Tioga AMD MI250X/Slingshot 11

• Packing GPU ping-pong
with MPI API on HPE
CXI libfabric

• Lot of steps to fully
exploit hardware

• Packing to MI250X
write-through memory

• Readiness assertion
avoids RTS/CTS

• 512KB bandwidth
improved 33%, better for
smaller messages

• Integrating into Cabana
and Kokkos mini-
applications

Center for Understandable, Performant Exascale Communication Systems

Integration of Stream-triggering
• We’ve identified an interface that works with MPI
• CUP-ECS’s MPI Advance stream-triggering library

works with several backends (CUDA, CXI, etc) to
create a portable interface for stream triggering

• We created variants of Cabana that support stream
triggering

• Creates enqueue variants for scatter and gather
• Uses stream-triggering’s queue function to schedule and wait on

the underlying communications
• We refactored our CabanaGhost benchmarks to

utilize the new stream triggering interfaces added to
Cabana Idealized Stream-Triggering Interface

Center for Understandable, Performant Exascale Communication Systems

Diving Deeper into Cabana
• Designed Cabana Stream Halo for regular grids

• Provides stream-triggered enqueueScatter and enqueueGather operations for halo exchanges
• Added CommSpace::Mpich that uses existing (unoptimized) MPICH stream triggering primitives
• Currently adding CommSpace::MpiAdvance backend to leverage new MPI Advance primitive

• Created CabanaGhost benchmark
• Test performance of stream-triggered halo exchange primitives
• Enable comparisons between different stream triggered backends

• Current work
• Performing initial testing on UNM on Hopper system, targeting later testing on Tioga/Tuolumne
• Developing support for stream-triggered collectives in MPI Advance and Cabana

Center for Understandable, Performant Exascale Communication Systems

Conclusions and Future Work
• Conclusions

• This project successfully integrated MPI Advance stream-triggering with Cabana and
CabanaGhost on Hopper

• The results are promising but some issues remain
• Future Work

• Stream-triggered CabanaGhost working with CXI on the Tioga system and CUDA on
Hopper in the near-future

• Creation of a Kokkos-level stream-triggered interface and further experiments with MPI
stream-triggering

• Port stream triggering into the KokkosComm library to enhance MPI+Kokkos integration
and performance

Center for Understandable, Performant Exascale Communication Systems

Enabling Performant Inter-Node
Communication for Kokkos Views

C. Nicole Avans, Carl Pearson1, Jan Ciesko1, Evan Drake
Suggs, Stephen L. Olivier1, Anthony Skjellum

1Sandia National Laboratories

Center for Understandable, Performant Exascale Communication Systems

Kokkos Comm

• The Kokkos Comm library introduces a new communication
interface integrated with Kokkos Views

• A unified performance-portable ecosystem for on- and off-
node parallel programming

• Kokkos Comm optimizes movement of data by abstracting
implementation-specific details and marshaling and
unmarshalling of data away from the end-user programmer

Center for Understandable, Performant Exascale Communication Systems

Design Communication for Performance,
Portability, & Productivity
• Enable the fastest path for data to move without changing the

program
• Native multi-transport communication support for performance and

portability without reducing productivity
• GPU memory space communication is supported based on Kokkos

enabled backends (e.g., CUDA, HIP)

Center for Understandable, Performant Exascale Communication Systems

Results
Experiments executed to optimize performance and identify bottlenecks on multiple
nodes of SNL Weaver (NVIDIA Tesla V100) and LLNL Tioga (AMD MI250X)

Center for Understandable, Performant Exascale Communication Systems

Future Work & Opportunities
• Enhance support to include arbitrary Kokkos View types and

mdspan
• Add new communication space backends (e.g., NCCL) to extend

Kokkos Comm beyond MPI-based communication for higher
performance

• Add support for stream-triggered communication and libfabric to
enable optimizations for system-specific performance

Planned Development Roadmap

Partitioned Communication in
Iterative Sparse Matrix Operations

Gerald Collom
Amanda Bienz

SpMBV

Image source:
Performance Analysis and
Optimal Communication
for ECG by Lockhart et al,
2023

Motivations

• Deep learning

• Block Krylov Methods

• Graph Algorithms

• Quantum State Propagation

• Sparse PCA

SpMBV Benchmark
• Initialize communication

• Iterations:

• Pack message buffer

• Communicate

• Multiply

• Cleanup communication requests

Partitioned MPI

In Benchmark:
• Add threaded region

for packing
• Threads

asynchronously
advance to call Pready

Early Communication and Computation

Benchmark Modifications:
- Extend threaded region to

include computation

Allow threads to
independently advance
between computation and
communication

Preliminary Results

Collective Communication Abstractions
and Optimizations
• Evelyn Namugwanya, TN Tech: Optimizing Collective

Communication Using MPI RMA & Generalized Algorithms
• Mike Adams, UNM: Optimizing GPU-Aware Allreduce Operations
• Shannon Kinkead, UNM: Scaling All-to-all Operations Across

Emerging Many-Core Supercomputer

Center for Understandable, Performant Exascale Communication Systems

Evelyn Namugwanya, Amanda Bienz,
 Matthew Dosanjh1, Anthony Skjellum

1Sandia National Laboratories

RMA-Based Alltoallv: Performance Analysis

Center for Understandable, Performant Exascale Communication Systems

Introduction

• Alltoallv is critical in high-performance computing (HPC).

• MPI_Alltoallv is widely used for variable-size data exchange.

• RMA (Remote Memory Access) enables one-sided communication.

• Goal: Evaluate performance of RMA-based Alltoallv variants.

Center for Understandable, Performant Exascale Communication Systems

Methodology

• Implemented several versions of alltoallv_rma.

• Evaluated on LLNL Lassen and Dane clusters.

• APIs: MPI_Win_fence, MPI_Win_lock, MPI_Win_flush

• Caliper profiling

• Focused on reducing sync overhead and improving scalability

Center for Understandable, Performant Exascale Communication Systems

Fence-based Alltoallv RMA

• Uses MPI_Win_fence to begin/end RMA epoch.

• MPI_Put used to transfer data into target memory.

• Synchronizes with two MPI_Win_fence calls and MPI_Barrier.

• Simpler but incurs global synchronization overhead.

Center for Understandable, Performant Exascale Communication Systems

Lock-based Alltoallv RMA

• Employs MPI_Win_lock_all and MPI_Rput.

• Asynchronous data transfer with MPI_Rput.

• Uses MPI_Win_flush_all to ensure completion.

• Finer-grain control compared to fence.

• Ends with MPI_Win_unlock_all and MPI_Barrier.

Center for Understandable, Performant Exascale Communication Systems

Alltoallv Comparison

Message size = 33,554,432 bytes

Lower is
better

Center for Understandable, Performant Exascale Communication Systems

Results and Future work

• Experiments with our Alltoallv Benchmark on LLNL Lassen and Dane
supercomputers.

• The default MPI_Alltoallv offers strong performance on small process counts.
• RMA variants, especially with fine-grain locking, scale better with more nodes

and process count.
• This can be attributed to its flexibility as compared to MPI_Win_fence.
• Synchronization overhead is a key bottleneck.
• Future work includes using OpenSHMEM and comparing persistent RMA vs.

OpenSHMEM Alltoallv.

38

Optimizing GPU-Aware
Allreduce Operations

Mike Adams, Amanda Bienz

GPU-Aware Allreduce

Multi-Lane Allreduce
1. MPI_Reduce_scatter on node
2. MPI_Allreduce with only

corresponding GPUs on each
other node

3. MPI_Allgather on node

J. L. Träff and S. Hunold, "Decomposing MPI Collectives for
Exploiting Multi-lane Communication," 2020 IEEE International
Conference on Cluster Computing (CLUSTER)

Locality-Aware Allreduce
1. MPI_Allreduce on node
2. MPI_Allreduce with only

corresponding GPUs on each
other node

Locality-Aware Allreduce

} 4x Speedup• DeltaAI (Grace Hopper)

• 4 GPUs per node

• 16 Nodes

Multiple MPI Ranks per GPU
• Each GPU has 1 leader MPI

rank and many other non-leader
ranks
• Leader creates buffer
• Shares IPC handle with other

ranks
• Each rank reduces their local

portion of buffer

Initial Results

• Delta Supercomputer

• 4 GPUs per node

• Each timing: best time for
multiple underlying algorithms

Scaling All-to-all Operations
Across Emerging Many-Core

Supercomputers
Shannon Kinkead1, Amanda Bienz

1Sandia National Laboratories

All-to-all Operations
• Each process exchanges an

equal sized amount of data with
every other process

• Pairwise: scheduled exchange,
one send/recv at a time

• Nonblocking: initialize all
communication, wait

• Emerging systems: many cores
per node, intra- and inter-node
communication performance
differs greatly

Hierarchical All-to-all Operations

• Hierarchical: one
process per node
performs all inter-node
communication

• Multi-leader: a number
of leaders per node each
perform a subset of inter-
node communication

Locality-Aware All-to-all Operations

• Node-Aware: all-to-all
between all processes
with equal local_rank,
then all-to-all on node

• Locality-Aware: Same
as node-aware, but
multiple groups per node

Multileader Locality

• Multiple leaders per node,
each performing a node-
aware all-to-all

Scaling Results (Dane, 32 Nodes)

Solid: Pairwise
Dotted: Nonblocking

Solid: Pairwise
Dotted: Nonblocking

Multileader + Locality

More Results

Amber Tachi

Poster-based Discussion Time
Lunch provided at Noon

	Communication Optimization Research
	Research Lightning Talks/Posters
	Point-to-point and neighbor exchange communication abstractions
	RAPIDS Channel API: �Improved Persistent Communication
	State of the Art
	What is RAPIDS?
	Channel API
	Future APIs
	Cabana Abstractions
	Using Cabana to enable performant, application-facing C++ communication interfaces
	Expanding Cabana Communication Abstractions
	Enabling Stream-Triggered MPI+X Backends for Cabana
	Stream Triggering for MPI
	Initial Benchmark Performance bears out on LLNL Tioga AMD MI250X/Slingshot 11
	Integration of Stream-triggering
	Diving Deeper into Cabana
	Conclusions and Future Work
	Enabling Performant Inter-Node�Communication for Kokkos Views
	Kokkos Comm
	Design Communication for Performance, Portability, & Productivity
	Results
	Future Work & Opportunities
	Partitioned Communication in Iterative Sparse Matrix Operations�
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Collective Communication Abstractions and Optimizations
	Evelyn Namugwanya, Amanda Bienz,� Matthew Dosanjh1, Anthony Skjellum�1Sandia National Laboratories
	Introduction
	Methodology
	Fence-based Alltoallv RMA
	Lock-based Alltoallv RMA
	Alltoallv Comparison
	Results and Future work
	Optimizing GPU-Aware Allreduce Operations
	GPU-Aware Allreduce
	Multi-Lane Allreduce
	Locality-Aware Allreduce
	Locality-Aware Allreduce
	Multiple MPI Ranks per GPU
	Initial Results
	Scaling All-to-all Operations Across Emerging Many-Core Supercomputers
	All-to-all Operations
	Hierarchical All-to-all Operations
	Locality-Aware All-to-all Operations
	Multileader Locality
	Scaling Results (Dane, 32 Nodes)
	Multileader + Locality
	More Results
	Poster-based Discussion Time

