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Point-to-point and neighbor exchange 
communication abstractions
• Riley Shipley, TN Tech: RAPIDS Channel API: Improved Persistent 

Communication
• Evan Suggs, TN Tech: Enabling Stream-Triggered MPI+X backends 

for Cabana Benchmarks
• Nicole Avans, TN Tech: Enabling Performant Inter-Node 

Communication for Kokkos Views
• Gerald Collom, UNM: Partitioned Communication in Sparse Matrix 

Operations
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RAPIDS Channel API: 
Improved Persistent Communication

Riley Shipley, Anthony Skjellum, Patrick Bridges, Purushotham Bangalore
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State of the Art
• MPI has been integral to HPC from the start
• Vendor-locked alternatives (NCCL et al) are starting to take the lead 
• MPI has been too slow to adapt and innovate due to standardization 

process (ex: GPU support)
• Optimization strategies have been explored extensively
• Generality limits performance potential (ex: MPI_Wait)
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What is RAPIDS?
• Reduced API Data-transfer Specifications
• Goal: Define styles of communication used by applications as 

minimal (RISC-like) APIs that are composable
• Separating each kind of communication into its own library:

• Reduces overhead
• Promotes innovation
• Simplifies adaptation to new architectures
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Channel API
• Designed for stencil-based applications: hypre, AMG, PIC codes, etc.
• Eliminates matching and tag queues by creating dedicated one-way 

Channels between processes, implemented over RMA
• Tag semantics can still be used by making multiple Channels between 

the same ranks
• RMA buffer can be segmented to allow multiple put operations to occur 

without synchronizing, unlike persistent operations
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Future APIs

GrabBag

• Irregular applications that 
know message destination, 
but not the source

• Ex: xRAGE and Cabana
• Removes the requirement 

for specifying a source on 
receive

• Source delivered with data

Concurrency

• Applications with dense 
data layouts (GPU-based)

• Ex: Regular stencil codes
• Allows for independent 

thread / GPU 
communication progress

Concurrent Channel

• Applications with fixed 
dense data layouts

• Applies the concepts of 
Channel and Concurrency 
libraries

• Result is multi-thread 
communication that avoids 
queues



Cabana Abstractions
Jason Stewart, Patrick Bridges



Using Cabana to enable performant, application-
facing C++ communication interfaces
• Cabana includes a variety of communication abstractions

• Originally drawn from Trilinos Teuchos - CommunicationPlan, Distributor, Particle/Grid Halo
• Simpler place for student innovation/development than Trilinos
• Range of interesting standalone benchmarks that use these abstractions – MD, PD, MPM
• Goal is to integrate back to Trilinos later

• Filling out range of communication patterns, backends
• Benchmarking

• Ported and expanded irregular halo benchmark from L7 to Cabana to look at broader range of abstractions
• Implemented simple stream-triggered halo exchange and complex fluid interface benchmarks to drive research

• Future work: 
• Stream-triggered irregular exchanges, 
• Collective abstractions for grids and AoSoAs
• Support Kokkos Comm and stream-triggered backends



Expanding Cabana Communication 
Abstractions
• Added Collector class to complement Cabana Distributor

• Distributor: You know how you are sending to but not who you are receiving from.
• Collector: You know who you are receiving from but not who you are sending to.
• Collector needed in sparse matrix operations, new Beatnik unstructured finite element halo
• PR submitted to Cabana main branch under review

• Added Cabana Infrastructure to support multiple communication backends
• CommSpace::Mpi, CommSpace::MpiAdvance inspired by Kokkos Comm Communication Spaces
• Cabana design in collaboration with Stuart Slattery and Sam Reeve (ORNL)
• PR in development for submission next month

• Optimizing Irregular exchange abstractions in the MPI Advance Communication Space
• Leverage MPI Advance neighbor discovery and neighbor exchange optimizations (e.g. MPI_Alltoall_crs)
• PR in development for submission next month

• Co-designing Stream Triggering Abstractions for MPI Advance and Cabana
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Enabling Stream-Triggered 
MPI+X Backends for Cabana

Evan Drake Suggs, Patrick Bridges, 
Derek Schafer, Anthony Skjellum
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Stream Triggering for MPI
• Lots of different proposals for 

stream triggering for MPI
• None remotely close to standard, 

accepted, or portable
• Why is this hard?

• Need to preserve existing semantics 
• Without adding lots of new 

operations (∀x: MPI_Enqueue_X)
• Or relying on obscure, hard to use 

parts of the standard (e.g., PSCW) Bridges, Skjellum, Suggs, Schafer, and Bangalore. Understanding GPU 
Triggering APIs for MPI+X Communication. In Proceedings of EuroMPI 
2024. 
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Initial Benchmark Performance bears out on 
LLNL Tioga AMD MI250X/Slingshot 11

• Packing GPU ping-pong 
with MPI API on HPE 
CXI libfabric

• Lot of steps to fully 
exploit hardware

• Packing to MI250X 
write-through memory

• Readiness assertion 
avoids RTS/CTS

• 512KB bandwidth 
improved 33%, better for 
smaller messages

• Integrating into Cabana 
and Kokkos mini-
applications 
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Integration of Stream-triggering
• We’ve identified an interface that works with MPI
• CUP-ECS’s MPI Advance stream-triggering library 

works with several backends (CUDA, CXI, etc) to 
create a portable interface for stream triggering

• We created variants of Cabana that support stream 
triggering

• Creates enqueue variants for scatter and gather
• Uses stream-triggering’s queue function to schedule and wait on 

the underlying communications
• We refactored our CabanaGhost benchmarks to 

utilize the new stream triggering interfaces added to 
Cabana Idealized Stream-Triggering Interface
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Diving Deeper into Cabana
• Designed Cabana Stream Halo for regular grids

• Provides stream-triggered enqueueScatter and enqueueGather operations for halo exchanges
• Added CommSpace::Mpich that uses existing (unoptimized) MPICH stream triggering primitives
• Currently adding CommSpace::MpiAdvance backend to leverage new MPI Advance primitive

• Created CabanaGhost benchmark
• Test performance of stream-triggered halo exchange primitives
• Enable comparisons between different stream triggered backends

• Current work
• Performing initial testing on UNM on Hopper system, targeting later testing on Tioga/Tuolumne
• Developing support for stream-triggered collectives in MPI Advance and Cabana
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Conclusions and Future Work
• Conclusions

• This project successfully integrated MPI Advance stream-triggering with Cabana and 
CabanaGhost on Hopper

• The results are promising but some issues remain
• Future Work 

• Stream-triggered CabanaGhost working with CXI on the Tioga system and CUDA on 
Hopper in the near-future

• Creation of a Kokkos-level stream-triggered interface and further experiments with MPI 
stream-triggering

• Port stream triggering into the KokkosComm library to enhance MPI+Kokkos integration 
and performance
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Enabling Performant Inter-Node
Communication for Kokkos Views

C. Nicole Avans, Carl Pearson1, Jan Ciesko1, Evan Drake 
Suggs, Stephen L. Olivier1, Anthony Skjellum

1Sandia National Laboratories
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Kokkos Comm

• The Kokkos Comm library introduces a new communication 
interface integrated with Kokkos Views

• A unified performance-portable ecosystem for on- and off-
node parallel programming

• Kokkos Comm optimizes movement of data by abstracting 
implementation-specific details and marshaling and 
unmarshalling of data away from the end-user programmer
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Design Communication for Performance, 
Portability, & Productivity
• Enable the fastest path for data to move without changing the 

program
• Native multi-transport communication support for performance and 

portability without reducing productivity
• GPU memory space communication is supported based on Kokkos 

enabled backends (e.g., CUDA, HIP)
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Results
Experiments executed to optimize performance and identify bottlenecks on multiple 
nodes of SNL Weaver (NVIDIA Tesla V100) and LLNL Tioga (AMD MI250X) 
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Future Work & Opportunities
• Enhance support to include arbitrary Kokkos View types and 

mdspan
• Add new communication space backends (e.g., NCCL) to extend 

Kokkos Comm beyond MPI-based communication for higher 
performance

• Add support for stream-triggered communication and libfabric to 
enable optimizations for system-specific performance

Planned Development Roadmap



Partitioned Communication in 
Iterative Sparse Matrix Operations

Gerald Collom
Amanda Bienz



SpMBV

Image source:  
Performance Analysis and 
Optimal Communication 
for ECG by Lockhart et al, 
2023



Motivations

• Deep learning

• Block Krylov Methods

• Graph Algorithms

• Quantum State Propagation

• Sparse PCA



SpMBV Benchmark
• Initialize communication

• Iterations:

• Pack message buffer

• Communicate

• Multiply

• Cleanup communication requests



Partitioned MPI

In Benchmark:
• Add threaded region 

for packing
• Threads 

asynchronously 
advance to call Pready



Early Communication and Computation

Benchmark Modifications:
- Extend threaded region to 

include computation

Allow threads to 
independently advance 
between computation and 
communication



Preliminary Results



Collective Communication Abstractions 
and Optimizations
• Evelyn Namugwanya, TN Tech: Optimizing Collective 

Communication Using MPI RMA & Generalized Algorithms
• Mike Adams, UNM: Optimizing GPU-Aware Allreduce Operations
• Shannon Kinkead, UNM: Scaling All-to-all Operations Across 

Emerging Many-Core Supercomputer
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Evelyn Namugwanya, Amanda Bienz,
 Matthew Dosanjh1, Anthony Skjellum

1Sandia National Laboratories

RMA-Based Alltoallv: Performance Analysis
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Introduction

• Alltoallv is critical in high-performance computing (HPC).

• MPI_Alltoallv is widely used for variable-size data exchange.

• RMA (Remote Memory Access) enables one-sided communication.

• Goal: Evaluate performance of RMA-based Alltoallv variants.
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Methodology

• Implemented several versions of alltoallv_rma.

• Evaluated on LLNL Lassen and Dane clusters.

• APIs: MPI_Win_fence, MPI_Win_lock, MPI_Win_flush

• Caliper profiling

• Focused on reducing sync overhead and improving scalability
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Fence-based Alltoallv RMA

• Uses MPI_Win_fence to begin/end RMA epoch.

• MPI_Put used to transfer data into target memory.

• Synchronizes with two MPI_Win_fence calls and MPI_Barrier.

• Simpler but incurs global synchronization overhead.
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Lock-based Alltoallv RMA

• Employs MPI_Win_lock_all and MPI_Rput.

• Asynchronous data transfer with MPI_Rput.

• Uses MPI_Win_flush_all to ensure completion.

• Finer-grain control compared to fence.

• Ends with MPI_Win_unlock_all and MPI_Barrier.
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Alltoallv Comparison

Message size = 33,554,432 bytes 

Lower is 
better
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Results and Future work

• Experiments with our Alltoallv Benchmark on LLNL Lassen and Dane 
supercomputers.

• The default MPI_Alltoallv offers strong performance on small process counts.
• RMA variants, especially with fine-grain locking, scale better with more nodes 

and process count. 
• This can be attributed to its flexibility as compared to MPI_Win_fence.
• Synchronization overhead is a key bottleneck.
• Future work includes using OpenSHMEM and comparing persistent RMA vs. 

OpenSHMEM Alltoallv.

38



Optimizing GPU-Aware 
Allreduce Operations

Mike Adams, Amanda Bienz



GPU-Aware Allreduce



Multi-Lane Allreduce
1. MPI_Reduce_scatter on node
2. MPI_Allreduce with only 

corresponding GPUs on each 
other node

3. MPI_Allgather on node

J. L. Träff and S. Hunold, "Decomposing MPI Collectives for 
Exploiting Multi-lane Communication," 2020 IEEE International 
Conference on Cluster Computing (CLUSTER)



Locality-Aware Allreduce
1. MPI_Allreduce on node
2. MPI_Allreduce with only 

corresponding GPUs on each 
other node



Locality-Aware Allreduce

} 4x Speedup• DeltaAI (Grace Hopper)

• 4 GPUs per node 

• 16 Nodes



Multiple MPI Ranks per GPU
• Each GPU has 1 leader MPI 

rank and many other non-leader 
ranks
• Leader creates buffer
• Shares IPC handle with other 

ranks
• Each rank reduces their local 

portion of buffer



Initial Results

• Delta Supercomputer

• 4 GPUs per node

• Each timing: best time for 
multiple underlying algorithms



Scaling All-to-all Operations 
Across Emerging Many-Core 

Supercomputers
Shannon Kinkead1, Amanda Bienz

1Sandia National Laboratories



All-to-all Operations
• Each process exchanges an 

equal sized amount of data with 
every other process

• Pairwise: scheduled exchange, 
one send/recv at a time

• Nonblocking: initialize all 
communication, wait

• Emerging systems: many cores 
per node, intra- and inter-node 
communication performance 
differs greatly



Hierarchical All-to-all Operations

• Hierarchical: one 
process per node 
performs all inter-node 
communication

• Multi-leader: a number 
of leaders per node each 
perform a subset of inter-
node communication



Locality-Aware All-to-all Operations

• Node-Aware: all-to-all 
between all processes 
with equal local_rank, 
then all-to-all on node 

• Locality-Aware: Same 
as node-aware, but 
multiple groups per node



Multileader Locality

• Multiple leaders per node, 
each performing a node-
aware all-to-all



Scaling Results (Dane, 32 Nodes)

Solid: Pairwise
Dotted: Nonblocking



Solid: Pairwise
Dotted: Nonblocking

Multileader + Locality



More Results

Amber Tachi



Poster-based Discussion Time
Lunch provided at Noon
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